Diferencias de género en la percepción de la ciudadanía española sobre la Ciencia de Datos
DOI:
https://doi.org/10.31921/doxacom.n33a1126Palabras clave:
Género, ciencia de datos, comunicación científica, Big Data, Inteligencia ArtificialResumen
Este artículo tiene como objetivo comprobar si existen diferencias de género en el conocimiento y actitudes de la ciudadanía española hacia la ciencia de datos, además de si estas percepciones se vieron modificadas por la pandemia. Para ello se ha realizado una encuesta online con preguntas cerradas a una muestra representativa de 1105 ciudadanos y ciudadanas en dos oleadas (enero y octubre de 2020) que permitieron comparar en qué grado la pandemia por Covid-19 ejerció influencia. En los resultados se observa que en la primera oleada el conocimiento sobre Big Data e Inteligencia Artificial es moderado, siendo mayor en hombres, especialmente en Big Data; que el grado de interés disminuye en la segunda oleada en ambos géneros y apunta a varias diferencias de género en la percepción de beneficios y riesgos en sus aplicaciones: los hombres perciben más beneficios que las mujeres, mientras que las mujeres perciben más riesgos en general en todas las aplicaciones tecnológicas en la primera oleada, pero en la segunda sube su percepción de beneficios hasta casi igualar a los hombres. Se observa que en la segunda oleada los riesgos han aumentado para ambos géneros y que las diferencias entre ambos no resultan significativas.
Descargas
Referencias
Bauer, M. W., y Jensen, P. (2011). The mobilization of scientists for public engagement. Public Understanding of Science, 20(1), 3–11. https://doi.org/10.1177/0963662510394457
Berman, F. D. y Bourne, P. E. (2015). Let's Make Gender Diversity in Data Science a Priority Right from the Start. PLOS Biology, 13 (7). https://doi.org/10.1371/journal.pbio.1002206
Bustamante Alonso, N. B., y Guillén Alonso, S. Th. (2017). Un acercamiento al Big Data y su uti-lización en comunicación. Mediaciones Sociales, (16), 115–134. https://doi.org/10.5209/MESO.58112
Calvo-Rubio, L. M., Ufarte-Ruiz, Mª J. (2020). Percepción de docentes universitarios, estudiantes, responsables de innovación y periodistas sobre el uso de inteligencia artificial en periodismo. El profesional de la información, v. 29, n. 1, e290109. https://doi.org/10.3145/epi.2020.ene.09
Comisión Interamericana de Mujeres. (2020). COVID-19 en la vida de las mujeres. In OAS Cataloging-in-Publication Data. http://www.oas.org/cim%0Ahttp://www.oas.org/es/cim/docs/ArgumentarioCOVID19-ES.pdf
D'Ignazio, C. y Klein, L. F. (2020). Data feminism. MIT Press.
Díaz Martínez, C., Díaz García, P. y Navarro Sustaeta, P. (2020). Sesgos de género ocultos en los macrodatos y revelados mediante redes neurales: ¿hombre es a mujer como trabajo es a madre?. Revista Española de Investigaciones Sociológicas, 172: 41-60. http://dx.doi.org/10.5477/cis/reis.172.41
European Commission (2014). Special Eurobarometer 419: Public perceptions of science, research and innovation (Issue October). European Commission. https://doi.org/10.2777/95599
European Commission (2017a). Special Eurobarometer 460: Attitudes towards the impact of digitisation and automation on daily life. https://doi.org/10.2759/835661
European Commission (2017b). Special Eurobarometer 464a: Europeans’ attitudes towards cyber security Fieldwork (Issue June). European Commission. https://doi.org/10.2838/009088
European Commission (2020). On Artificial Intelligence - A European approach to excellence and trust. https://doi.org/10.1017/CBO9781107415324.004
FECYT Fundación Española para la Ciencia y la Tecnología (2018). IX Encuesta de Percepción Social de la Ciencia y la Tecnología 2018. https://icono.fecyt.es/sites/default/files/filepublicaciones/18/epscyt2018_informe_0.pdf
FECYT Fundación Española para la Ciencia y la Tecnología. (2021). Percepción social de la ciencia y la tecnología en España 2020. https://icono.fecyt.es/sites/default/files/filepublicaciones/21/percepcion_social_de_la_ciencia_y_la_tecnologia_2020_informe_completo_0.pdf
Felt, U. (ed). (2007). Optimising public understanding of science and technology, 610–644.
Finucane, M. L., Slovic, P., Mertz, C. K., Flynn, J. y Satterfield, Th. A. (2000). Gender, race, and perceived risk: The “white male” effect. Health, Risk & Society, 2(2), 159–172. https://doi.org/10.1080/713670162
Hayes, B. C., y Tariq, V. N. (2000). Gender differences in scientific knowledge and attitudes toward science: a comparative study of four Anglo-American nations. Public Understanding of Science, 9(4), 433–447. https://doi.org/10.1088/0963-6625/9/4/306
Howard, A., Borenstein, J. (2018). The Ugly Truth About Ourselves and Our Robot Creations: The Problem of Bias and Social Inequity. Sci Eng Ethics, 24, 1521–1536. https://doi.org/10.1007/s11948-017-9975-2
Instituto de las Mujeres y para la Igualdad de Oportunidades. (2020). “La perspectiva de género, esencial en la respuesta a la COVID-19.” In Catálogo de publicaciones de la Administración General del Estado.
Jurgenson, N. (2014). View from nowhere. The New Inquiry. October 9. https://thenewinquiry.com/essays/view-from-nowhere/
Leavy, S. (2018). “Gender bias in artificial intelligence: the need for diversity and gender theory in machine learning”. In Proceedings of the 1st International Workshop on Gender Equality in Software Engineering (GE '18). Association for Computing Machinery, New York, NY, USA, 14–16. https://doi.org/10.1145/3195570.3195580
Mayer-Schönberger, V., & Cukier, K. (2013). Big Data. La revolución de los datos masivos. Turner Publicaciones S.L.
McQuillan, D. (2018). Data science as machinic neoplatonism. Philosophy & Technology, 31(2), 253-272. https://doi.org/10.1007/s13347-017-0273-3
Miller, J. D. (2004). Public Understanding of, and Attitudes toward, Scientific Research: What We Know and What We Need to Know. Public Understanding of Science, 13(3), 273–294. https://doi.org/10.1177/0963662504044908
Miller, S. (2001). Public understanding of science at the crossroads. Public Understanding of Science, 10(1), 115–120. https://doi.org/10.3109/a036859
Monleón Getino, A. (2015). El impacto del Big-data en la Sociedad de la Información. Significado y utilidad. Historia y Comunicación Social, 20(2), 427–445. https://doi.org/10.5209/rev_HICS.2015.v20.n2.51392
Montaña Blasco, M., Ollé Castellà, C., y Lavilla Raso, M. (2020). Impacto de la pandemia de Covid-19 en el consumo de medios en España. Revista Latina, (78), 155-167. https://doi.org/10.4185/RLCS-2020-1472
ONU Mujeres. (2021). Los efectos del COVID-19 sobre las mujeres y las niñas. UnWomen. https://interactive.unwomen.org/multimedia/explainer/covid19/es/index.html
Palomares Ruiz, A. (2004). Profesorado y educación para la diversidad en el siglo XXI. Universidad de Castilla la Mancha.
Pearson, G. (2001). The participation of scientists in public understanding of science activities: The policy and practice of the U.K. Research Councils. https://doi.org/10.3109/a036860
Samoili, S., López Cobo, M., Gómez, E., De Prato, G., Martínez-Plumed, F., & Delipetrev, B. (2020). AI Watch - Defining Artificial Intelligence. Towards an operational definition and taxonomy of artificial intelligence. In Joint Research Centre (European Commission). https://doi.org/10.2760/382730
Sánchez-Holgado, P., Arcila-Calderón, C., y Frías-Vázquez, M. (2021). El papel de los y las periodistas españoles ante la comunicación de la ciencia de datos en medios en línea. Revista Prisma Social, (32), 344-375. https://revistaprismasocial.es/article/view/3901
Tannenbaum, C., Ellis, Robert P., Eyssel, F., Zou, J. y Schiebinger, L. (2019). Sex and gender analysis improves science and engineering. Nature, 575, 137–146. https://doi.org/10.1038/s41586-019-1657-6
Descargas
Publicado
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.